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Recently Addy and Datta have obtained a linearized solution for isentropic 
motions of a perfect fluid by assi~rning Cauchy data on the hypersurface x4=O 
and by imposing a restriction on the equation of state. In the present paper we 
pursue this study and discuss the problem of singularities from the standpoint 
of a local observer for which a singularity is defined as a state with an infinite 
proper rest mass density. It is shown that for a closed universe with any 
distribution of matter whatsoever there occurred a singularity in the past in the 
nonrotating parts of the universe and it must recur in the future. Furthermore, 
the collapse of a rotating fluid to a singularity seems inevitable when the 
relativistic equation of state is considered. 

1. I N T R O D U C T I O N  

Pachner  (1968, 1971) has s tudied the isentropic mot ions  of a perfect 
fluid by  using comoving  coordinates  in  the f ramework of general  relativity 
and  has investigated the p rob lem of singularities without  assuming a ny  
symmetry  in the line element.  Bera and  Da t ta  (1974, 1975), Da t t a  

(1975-1976, 1976-1977, 1977), and  Basu, Dalai,  and  Da t ta  (to be pub-  
lished) have pursued  this s tudy a n d  ob ta ined  l inearized solutions by  
deal ing with the Cauchy  problem.  Recent ly  A d d y  a nd  Dat ta  (to be 
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published) have obtained a linearized solution for isentropic motions of a 
perfect fluid by assigning Cauchy data on the hypersurface x 4= 0 and b y  
imposing a restriction on the equation of state. In the present paper we 
pursue this study and discuss the problem of singularities from the 
standpoint of a local observer for which a singularity is defined as a state 
with an infinite proper rest mass density. It is shown that for a closed 
universe with any distribution of matter whatsoever there occurred a 
singularity in the past in the nonrotating parts of the universe and it must 
recur in the future. Furthermore, the collapse of a rotating fluid to a 
singularity seems inevitable when the relativistic equation of state is 
considered. This is in complete agreement with the conclusion of Hawking 
and Ellis (1968, 1973). 

2. THE LINEARIZED SOLUTION OF A PERFECT FLUID 

In brief we write out the linearized solution for isentropic motions of a 
perfect fluid obtained very recently by Addy and Datta (to be published) 
by assigning Cauchy data gik, gig,4 on the hypersurface x a =  0: 

ds2---gt~r, dxt~dx', signature ( +  + + - )  (2.1) 

where 

gp, pmgp, l,(X 1 , X 2 , X 3 , X 4 )  (2.2) 

gi4=u,=O ( i=  1,2) (2.3) 

g34 = u3/~ = c3( x2, x3)//t2 (2.4) 

1 
g 4 4  = U 4 / / ' t  ~--- - -  - -  (2.5) /~2 

I~ = 1 + e + p / p  (2 .6 )  

wherep is the pressure, p the proper rest mass density, e the proper internal 
energy per unit mass, and u ~ the timelike 4-velocity. In the comoving 
reference frame defined by 

u'=8~ ( i=1 ,2 ,3 )  (2.7) 

one obtains 

U4=(_g44)- i /2  (2.8) 
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and the conservation law of baryon number is reduced to 

0 = (g~ /g ) l /2 f (x i )  (2.9) 

where f ( x  ~) is a function of space coordinates and may be determined by 
the initial distribution of matter. The energy momentum tensor for a 
perfect fluid is defined by 

T~"=plzu~,u" +p3 ~ (2.10) 

We consider that all thermodynamical processes are adiabatic and assume 
that /~ is a function of x 4 alone. The Cauchy data gik, gik,4 on the 

hypersurface x4=0 are chosen to satisfy 

(gik)o=(l+NX)6,1,, I~,l<<l (2.11) 

(gi,,4)o=O (i, k= 1,2,3) (2.12) 

where 

1 F[ ( l + e )  ] 
X= - ~ j [ p ~  dv (b=const) (2.13) 

dv = dx ldx2dx3 (2.14) 

r is the spatial distance (in Euclidean metric) of dv from the point at which 
is computed and the integration is taken over the hypersurface x 4 =0. 

Thus in terms of Cauchy data given by (2.11)-(2.14) and the derivatives 
(gik,44)O of the Cauchy data explicitly given by the independent field 
equations 

R,,= I rg, k) (2.15) 

the linearized solution of Addy and Datta (personal communication) can 
be expressed by the power series 

I X4 2 gik=(gi~)o+~( ) (gik,44)o +" .. (2.16) 

3. INVESTIGATION OF SINGULARITIES 

In order to deal with the problem of singularities from the standpoint 
of a local observer one must know the past and future of the proper rest 
mass density of the perfect fluid whose behavior is determined by the 
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Einstein field equations and as such one must express the relation (2.9) in a 
differential form. Differentiating (2.9) with respect to x 4, one obtains 

In view of the equation 

1 ~y 
P,4/P = ~(g44 ,4 /g44- -g  g~v,4) 

one may obtain following Pachner (1971) 

where 

P,44 4'n'p (p, + 2p /p )  + 4 (p,4"~ 2 

(3.1) 

(3.2) 

relations (Landau and Lifshitz, 1962) 

Y~k -~ gik -- gi4gk 4 /  g44 

.~ik .~ gik 

(3.7) 

(3.8) 

The geometrical properties of space are defined by the positive definite 
metric 

d o  2 = Tikdxidx k (3.9) 

' (3 .4)  XaB = ~gaB,4 

1 
6dab = -~ ( ga4, B - - g  P4, a) ( 3 . 5 )  

Following Pachner (1971), Bera and Datta (1975), and Datta (1975-1976, 
1976-1977, 1977), we define ~2 by 

~2..~. I ia kb 1 I i k  7 \2 (3.6) 
~ [  ~f ~ik,4"Yab,4" - i 2 ~  ik,4] 

where 7~k, ~ik are connected to the metric tensor components g~ by the 

1 g44,44 g,~(o:~, 4 +X,,4);~] (3.3) 
+ 2 g44 
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Furthermore, the quantity (I)2 expresses the influence of the shear and 
remains invariant with respect to coordinate transformations which are 
restricted by the coordinate conditions (2.5) and (2.7). Thus one may 
choose at any given moment a system of coordinates in which equations 
(2.3)-(2.5) hold and whose spatial axes are at a particular point orthogonal 
to each other. If the motion is isotropic at the point, the invariant e~ 2 
vanishes in this system and is given by 

f • 2 _  1 ia k b  1 i k  2 1 34 2 -'~g g gik,4gab,4---i2(g gik,4) +~(g g34,4) 

1 33 34~ _ 1 i k _ 3 4 _  _ 
+ i g  g g 3 3 , 4 9 3 4 , 4 - 6 g  g g i k , 4 9 3 4 , 4  (3.10) 

In view of (3.1), (3.4), and (3.10) one may get 

1 2 2 = (1)2  1 2 
X ctf lX otfl - -  3 ( P , 4 / P )  - -  2 ( X  4 4 / g 4 4 )  a(g44,4/g44) ( 3 . 1 1 )  

The only nonvanishing components of o ~  are given by 

% 3  = - -  C 3 , 2 / 2 / " t 2  = - -  t~32 (3.12) 

0)34 = - -  C 3 ~  , 4 / / ~ 3  = - -  0,)43 

In view of (2.6), (3.12) and the conservation law of energy 

d___~ = p__ (3 .13)  do p2 

one may get 

( ~ ) 2g~'" Q~Q,,= p2g33( c31z,4 ) 2 (3.14) 

where 

Q1 =p,l, Q2=p,2, O3=p,3+c3p,4, Q4 =0 (3.15) 

Next, from (3.12) and (3.14), we get 

~o.B0). _ 21fa l  = 2 ( d p )  2 
I~ 2 i.tap2 ~ g~'O~,O,, (3.16) 
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where the square of the angular velocity is given by (G6del, 1949; Taub, 
1956) 

lal 2-- g~a. w = g33(c3,2)2//41,1,2922 (3.17) 

/, 1 
= ~(-  g)- '/2c~"~'uou~,~, 

As the components %4 and X~a behave like the components of 
four-dimensional covariant vectors under the coordinate transformations 
permitted by the coordinate conditions (2.5) and (2.7), one may calculate 

1 g44,44 gaB(O0~ 4 _l_Xa4); fl 
2 g44 

1 (g44 '4 /2  1/2IgaflOfl_~p(_g)l/2/~3p] = ~ - ~ -  + ( - g ) -  ~ ~,~ 

(3.18) 

In view of (3.1), (3.11), (3.16), and (3.18), and using the relation 

ds= (-g44)l/2 dx a=dx4/I.t (3.19) 

one may write the differential relation (3.3) in the form 

1 O2P =4,1rp(i.t+p]kl~2p2 )(-~o)g~'~Qt 'Q" O OS 2 

[4  ( 1 ~ )  2 1 d p ] ( l O p t 2  /~2~2 
+ 3 +  + ~  ~ J  + 

+l~2(-g)-'/2[ g~r (-g)l/2/#3p], -2]a]2 (3.20) 

For nonrotating matter in equilibrium we must have 

a20 = ~---~P = 1~212=~=0 (3.21) 
OS 2 OS 
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and all derivatives with respect to x 4 or s must vanish. Thus the condition 
for equilibrium of a perfect fluid comes out from (3.20): 

4~0(I~+2~P0 )+[  2--L-I[ dp l2(gito,iP,k)(--g)l/2 
l J t do / 

it [1 dp'~. . , 1 / 2 / . ]  
= - -  g P/d-- '7- / t - -~J /t~/ 

' \ p  a p l  J,i 

(3.22) 

Thus one may conclude that 

[ it [ 1 _g)1/2/#], (3.23) 

represents the elastic forces which counterbalance the gravitational attrac- 
tion created by the rest mass, the pressure, and the square of the pressure 
gradient. Consequently equation (3.22) is the relativistic analog of the 
classical equation of the hydrostatic equilibrium 

4vrpG=-d iv(  1 gradp)  (3.24) 

where G is the Newtonian constant of gravitation. 
Now one can deal with the problem of singularities by examining the 

differential relation (3.20). This relation gives Raychaudhuri's formula 
(1955) for noncoherent matter with cosmological constant A=0:  

p,44/p=4~rp+ 4(p,4/p)Z +@z-21~] z (3.25) 

where �9 2 assumes the form 

f~2~ 1 ia~kb~ ~ 1 [ _ik_ ~2 
4g ~ ~ik,4dSab,4--"i21,g gik,4) (3.26) 

In the case of irrotational motion one may have 

c3=0 (3.27) 



Basu et  81. 

by a suitable coordinate transformation subject to the coordinate condi- 
tions (2.5) and (2.7) and the equation (3.20) can be reduced to 

1 0 2 9 = 4  0 1+r  +-~p2k--d-~p: (g O,iO,k) 
P 3S 2 

[ 4  dp ][18p~ 2 
--~P ] -~ -~P J k P O s ] +#2e2 

+lzE(--g)-'/Z[g~kp,k(1 -~p )(--  g) '/2/,tt3 ],,, (3.28) 

It is evident from (3.22) that if the mass of the nonrotating fluid in 
stable equilibrium exceeds a certain critical limit and if the equation of 
state is changed owing to the nuclear burning so that the elastic forces 
(3.23) cannot counterbalance the gravitational attraction created by the 
rest mass, the pressure and the square of the pressure gradient, the fluid 
starts contracting. As contraction proceeds, the increasing pressure in the 
first term of the right-hand member of (3.28), the kinetic energy of the 
fluid in the third term, the anisotropy in the isentropic motion in the fourth 
term, and the deviation from the uniform distribution of matter in the 
second term accelerate the gravitational collapse to a singularity which is 
reached in a finite interval of proper time (Oppenheimer and Volkoff, 
1939; Landau 1932). 

This conclusion, drawn from the standpoint of a local observer, can 
be applied to cosmology and one may state that for a closed universe with 
any distribution of matter whatsoever there occurred a singularity in the 
past in the nonrotating parts of the universe and it must recur in future 
(Hawking and Ellis, 1968, 1973; Bera and Datta, 1975; Datta, 1975-1976, 
1976-1977, 1977). 

We note in passing that the conclusion that the deviation from a 
spherically symmetric distribution of a nourotating fluid as represented by 
the square of the pressure gradient in the second term of the fight-hand 
member of (3.28) accelerates the gravitational collapse is in agreement with 
that of Penrose (1965). 

As the possibility of rotation of the universe in the large is admitted 
(Wolfe, 1970), we investigate the problem of gravitational collapse for 
rotational motion. 

In view of (2.5), (2.9), and (3.17), one may write 

i~t2 2 2 =g.(e3,2/f) ( p / 2 ~ )  (3.29) 
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From (3.29) it follows that for highly condensed matter the effect of 
rotation which opposes contraction is of the order of p 2, while that of 
attraction in the first term of the second member of (3.20) or (3.25) is of 
the order of p. Thus in spite of the fact that the gravitational attraction 
together with the square of the pressure gradient, the kinetic energy, and 
the anisotropy in the motion of a rotating fluid supports contraction, it 
appears from equation (3.20) that the rotation together with the elastic 
forces may possibly lead to the condition 

~20 <0 (3.30) 
Os 2 

during the contraction of space. Hence it seems that rotational motion may 
likely stop contraction and avoid the occurrence of a singularity (Pachner, 
1971; Bera and Datta, 1975; Datta 1975-1976, 1976-1977, 1977). Like- 
wise, from equation (3.25) corresponding to noncoherent matter one may 
conclude that a universe filled with spinning dust may not possibly 
contract to a singularity. This is in agreement with and supplemented by 
the conclusions of Trautman (1972a, 1972b, 1973), Kopczyfiski (1972, 
1973), and Tafel (1973), who have studied the problems on the basis of the 
Einstein-Cartan theory of gravitation. 

If during the contraction of a rotating fluid, its proper rest mass 
density attains very high magnitude and the equation of state becomes 
relativistic, then 

p =p(1 +e ) /3  (3.31) 

Substituting the value of p from (3.31) in (3.13) and integrating, one 
may get 

1 +e = ( p / p o )  1/3 (3.32) 

p/p  = i 1/3 
3(P/Po) (3.33) 

where Po denotes the proper rest mass density with zero internal energy. 
From (3.32) it follows that 

e<0,  when P<Po (3.34) 

Hence the relativistic equation of state (3.31) may be applicable only for 
0>>O0, for which case P0 may be treated as a constant. 

In the problem of gravitational collapse of a rotating fluid the first 
term of the right-hand member of (3.20) representing the gravitational 
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at tract ion and the last term representing the rotat ional  mot ion  play the 
dominan t  role when the equat ion of  state becomes  relativistic. In  the case 
under  considerat ion we note that  in view of  (3.29) and  (3.33) these two 

terms assume the values 

4r (/t + 2 p / p )  = 8r o V3p4/3 (3.35) 

1~12 =gllpa/S(3cs,2Plo/S/8f )2 (3.36) 

Compar ing  these results with the previous ones one m a y  notice that 
the high pressure increases the influence of gravitational at t ract ion f rom 
the order  p to p4/3, while it diminishes the influence of rotat ion f rom the 
order  p2 to p4/a. But as the kinetic energy which becomes relativistic during 
the contract ion of  space gives strong support  to contraction,  one may  
conclude that in spite of the fact  tha t  the rota t ion (3.36) together with the 
elastic forces opposes contract ion,  the gravitational at t ract ion together 
with other  terms support ing cont rac t ion  m a y  lead to the condi t ion 

O2____p_p > 0 (3.37) 
0s 2 

Thus the collapse of a rotat ing fluid to a singularity is inevitable when the 
relativistic equation of state is considered. 
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